


Abstract

Understanding the concepts of spectral estimation may become increasingly important in future
radar system design. The purpose of this technical memo is to introduce these concepts. A simple
model is formulated using a uniformly spaced linear phased array, and the classical Fourier,
Maximlfm Entropy (ME), and Multiple Signal Classification (MUSIC) techniques are described.

The performance of these three techniques is discussed through qualitative comparison.
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L Introduction

Many spectral estimation methods have been developed to determine the spatial distribution
of sources in the object field of an antenna system. These techniques are useful for both resolving
the presence of closely spaced sources, and detecting individual point scatterers on a single source
for imaging applications. The intent of this technical memo is to provide the necessary background
to understand these techniques. The presentation begins with the development of a simple model
using a-uniform linear phased array as a basis for the concepts. Three different spectral estimation
techniques are discussed: the classical Fourier method, the maximum entropy(ME) method, and the
multiple signal classification(MUSIC) method. The Fourier method is often termed conventional
and non-parametric, while the ME and MUSIC methods are parametric and typically referred to as
superresolution techniques. The performances of these techniques are compared qualitatively with
respect to their underlying concepts, with reference to the open literature. The presentation is
restricted to the narrowband case with all signals having the same carrier frequency.

I1. Model Formulation
Consider the linear phased array shown in figure 1. The arriving wavefront at the aperture

is the resultant sum of M radiating sources, and is sampled by each of the N elements. The
complex amplitude of the noiseless signal s(n) at each element may be expressed as

M
(1) s(n) = Z A cxp[ jkd(n— N; 1 )sin((pm)]
m=1

where N is the total number of elements, M is the total number of arriving signals, k = 27t/A is the
wave number, d is the element spacing, A, is the complex amplitude of the mt signal, and is the
angle of arrival of the m™ signal. The array element locations are referenced to the center of the
array as depicted in figure 1.
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figure 1.

The signal measured at each array element is perturbed by additive noise. The noise is principally
introduced by the antenna element and associated receive module, and is normally characterized by
their combined noise figure. In practice, the noise is modeled as a white, stationary, ergodic
random process [2],[3]. For the narrow band case, the complex amplitude of the noise signal
present at each element is

(2) w(n) =B_exp[—iB ]

where the amplitude B, is Rayleigh distributed, and the phase Bn is uniformly distributed over
(0,2m). The complex signal w(n) is Gaussian distributed, normally with zero mean. Combining
equations (1) and (2), the observed signal at each element is

3) x(n) = s(n) + w(n)

The following sections are based on the simple model presented in this section.

III. Classical Fourier Approach to Spectral Estimation

Consider the noise free expression for the signal at each element given in equation (1). An

interesting base-line approach may be taken to estimate the relative strength and angle of arrival of
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the mth signal. Recalling a common approach used in antenna system design, the far field
expression of the aperture radiation pattern may be determined by the Fourier transform of the
current distribution across the aperture. In this case, the far field source distribution may be
determined from the inverse Fourier transform of the aperture excitation current. That is,

L2

4) | f(u) = J ) i(x) exp[—jkxu] dx
L

where f(u) is the normalized complex far field source distribution, i(x) is the normalized complex
aperture excitation current, L is the total length of the aperture, and u = sin(¢). For a uniformly
spaced linear array, the aperture excitation may be expressed as a uniformly sampled continuous
aperture excitation. Thus,

N
) 00 =109 . 8(x-d(n-"a0 ))
n=1

where iy(x) is the continuous current excitation. Combining equations (4) and (5) results in

N
©6) f(u) = nz;; itn) cxp[ —jkd(n— N; ! )u]

Observing equations (1) and (6), it is apparent that s(n) is proportional to i(n). Substituting s(n)
into equation (6), and considering only the mth signal gives

N
. N+1

™ fw=A, Y, e im0 o, |

n=1
where u_= sin(p_). Note that equation (7) is a geometric series, and may be simplified to

(u—u )

sin(N 5 -~ )

(8) fuy=A_ =A_ fo(u—um)

u-u
sin( = )
2
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where f_(u-u,,) represents the radiation pattern of a uniformly illuminated linear array, whose beam
may be steered to a position @, by introducing a linear phase shift across the aperture. A plot of

f (u-u,) with u_=0, is shown in figure 2.

f(u)
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u in radians (N=11)
figure 2

The first sidelobe is -13dB relative to the main lobe, and successive sidelobes fall off at 6dB per
octive. This pattern illustrates many of the problems associated with spatial processing, and in
particular those pertaining to the performance of the Fourier technique. It is apparent that a main
lobe will occur in the direction of a defined angle of arrival, but ambiguities exist in the directions
of the sidelobes. In addition, the resolving power is determined by the width of the main lobe.
When two or more sources are present, superposition may be applied to express the angle
spectrum of the total field present at the aperture.

)
sin
©) Fw= D, Ay —r—
m=1 sin( 3 - )

Equation (9) represents M complex weighted radiation patterns positioned throughout the angle
spectrum corresponding to M discrete angles of arrival. Consider the simple case of two returns
whose radiation patterns overlap. It is possible that the presence of both returns may not be
detected, depending upon their relative strength and phase alignment. Thus, in the case of
resolving multiple returns having overlapping radiation patterns, the Fourier approach appears to
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have considerable limitations. One way to improve the performance is to taper the aperture
distribution[3]. This may reduce the sidelobe level considerably, at the expense of widening the
main lobe. There are a variety of aperture tapers presented in the literature that realize this
exchange[3]. The effective performance may be extended further by adaptively controlling the
aperture taper. Thus, the trade-off between the sidelobe level and the width of the main lobe could
adapt to the situation. The resolving power of the classical Fourier approach is at best on the order
of a standard 3dB beamwidth(A/L), depending upon the relative source strength and phase
alignment, and the SNR[3].

Despite the limitations presented, there are some notable advantages to the Fourier
approach. First, it is non-parametric in the sense that no known information of the received signal
is necessary for implementation. Second, it is robust because it is relatively insensitive to
parameter changes. And third, it is easy to implement making it a practical approach.

IV. Parametric Spectral Estimation

Consider the principles behind the basic Fourier approach just described. It is clear that its
limitations result from the assumption that the field is zero beyond the aperture. The principal idea
behind parametric spectral estimation (superresolution) is to not make this assumption.
Alternatively, the signal information available at the aperture is used to estimate additional signal
information beyond the aperture. The pioneering work in this area was performed by Burg [5] in
1967, and is commonly known as the Maximum Entropy Method(MEM). The maximum
entropy(ME) approach appears throughout the literature as the basis for solving many spectral
estimation problems. Since its inception, a number of superresolution techniques have been
developed. Perhaps the most popular being the Multiple Signal Classification (MUSIC) algonthm
developed by Schmidt[9] in 1979. As with most parametric spectral estimation techniques, both
MUSIC and ME operate on the spatial correlation or covariance matrix of the observed signal. The
covariance matrix may be developed by first summing equation (3) over N, and expressing itin a

more compact form using matrix notation. Thatis,

(10) X=S+w=Ba+w
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(11)

(12)

(13)

(14)

(15)

e

Wy

-¢]]

<

= the direction matrix of dimension N x M, and

[ v(1) |
v(2)

v(N)

[ x(1) ]
x(2)
| = the observed signal vector,
x(N)
—s(l)_
s(2)
I = the received signal vector,
s(N)
[ a(1) |
a(2)
l = the signal in space vector,
| 2™
[, 1-NT . 1=N7
eXp| 1P, —5— exp 19,5
[, 3-NT . 3-N7
_|exp|io—5— CXp 19—
C. N-17 . N-17
exp| ¢ —— €Xp 19,3

= the noise vector.

expl j@y
ex j(pM

| exp[ IPy

1-N T
2
3-N 7

2

N-17

2

-

The observed signal vector X represents a single snapshot of data corresponding to a particular

instant of time. In general, data is collected over a short period of time such that X consists of a

number of independent snapshots. Therefore the measured data normally available for processing

1s

Teti-6




(16) %(p) = Ba(p) + W(p) p=12,.P

where P is the total number of snapshots. The angles of arrival are assumed not to change
significantly in the processing interval, which is shown in equation (16) where the direction matrix
B is not a function of p. The signal in space vector & however, is a function of p because sources
responsible for its generation are generally unpredictable, and therefore, modeled as stochastic
processes[1]. Under this assumption, temporal averaging may be performed to improve the
spectral estimation.

The spatial correlation of the observed signal vector X is defined as

17 R = E[x(p)x"(p)]
where E[-] is the expectation operator, and + denotes complex conjugate transpose. Substituting
equation (16) into (17) and noting that the noise and signal are statistically independent results in

(18) R = E[Baa'B*] + E[ww]
=BRB'+R_ =R +R_

where R,, R, and R, are the spatial correlation matrices of the signal in space vector, noise
vector, and received signal vector, respectively. If the noise is white with zero mean and variance
o2, the spatial correlation matrix of the noise vector may be expressed as

(19) R =0’

and equation (18) becomes
(20) R=R_ +0’
where R is a square matrix whose rank corresponds to the number of elements, and the total

number of sources that may be detected is N-1. The mathematics are also valid for the single

snapshot case.
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A. Maximum Entropy (ME) Method

The principle behind the ME approach is to choose the spectrum f(u) whose inverse Fourier
transform is i(x) for Ix| < L/2, while making the fewest assumptions regarding unmeasured
information in the region Ix! > L/2. This condition is the information theory concept for
maximizing entropy. From the work of Shannon in 1948, entropy was found to be proportional to
the logarithm of the power spectrum, and is commonly expressed as

oo

Q1) H= J. In[S(u)]du

—o0

where S(u) = I[F(u)l2. An extension of the classical Fourier approach described in the previous
section may be thought of in terms of the Wiener-Khintchine theorem. This theorem states that the
power spectral density and the autocorrelation function are Fourier transform pairs. Using the
notation of equation (21), this may be stated as |

oo

(22) ~ Rx) =J- S(u) exp [+ jkxnu] du n=0,1,...,(N-1)

~—00

where R(x,) is the autocorrelation function of the field across the array. Mathematically, the ME
method consists of maximizing equation (21), while satisfying equation (22). For the case of the
periodic array, the ME estimate of the power spectrum may be expressed in closed form [4] as

d11

| [R™8]"W(u) |2

(23) Syen(® =

where d;; = (1,1) element of R-1, 5 =[1,0,0....,0]T, and W(u) is the direction of look vector

referenced from the center of the array. That is,

exp[jkdu(1-N/2]

(24) W(u) - exp[]kdu(3-n)/2]

exp[jkdu(N-1)/2]
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The resolution performance of the ME approach wheén the true autocorrelation function is
known is noise limited, and is supperior to the Fourier approach for both coherent and incoherent
sources. It is shown in reference [8] that the resolution limit expressed in fractional beamwidths is
proportional to (SNR)-13:26 where 0.1A/L resolution requires ~ 33dB of SNR. This limitation
has been found to be a result of uncompensated noise bias present in the diagonal elements of the
autocorrelation matrix[6] (see equations (18) thru (20)). If the effect of the noise bias is
compensated, angular resolution approaching 0. 12/L may be achieved at much lower values of
SNR[6],[7]. Thus, the ME approach, with or without noise bias compensation, will out-perform
the classical Fourier approach for the case of incoherent sources, where higher SNR's are required
in the absence of noise bias compensation.

B. Multiple Signal Classification (MUSIC) Method

The MUSIC method is a second generation spectral estimation technique that primarily
consists of performing eigenstructure analysis on the spatial correlation matrix R. Specifically,
there are two basic concepts behind the MUSIC method resulting directly from eigenstructure
analysis. First, the number of sources present is determined from the multiplicity of the smallest
eigenvalue of R,. Second, the directions of arrival are determined as those whose direction
vectors are orthogonal to the eigenvectors corresponding to the smallest eigenvalue of R,. Thus,
the first step of the MUSIC method is to determine the complex eigenvalues and corresponding
eigenvectors of R. The eigenvectors are then arranged as columns of an array in accordance to
increasing eigenvalues, and the sum of the outer products is computed as,

L4

+

(25) Cev= z \AA
i=1

where Vs the array of eigenvectors, L is the order of the eigenvector array, and q is the
maximum number of sources that can be detected as determined by the multiplicity of the smallest
eigenvalue of R. Examining equation (25) and noting the arrangement of V,, it is apparent that the
summation is performed over only those eigenvectors that are expected to correspond to signals.-
Consequently, the signals are separated from the noise bias that remains in the standard ME
method. Now the orthogonality principles may be applied to Cgy, and the power spectrum
resulting from the MUSIC method is determined to be
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(26) Sy =W @Chy Coy W™

where W(u) is the direction of look vector (equation (24)). Schmidt[9] has compared the MUSIC
technique to the standard ME method and the results indicate that the MUSIC method is superior.
This is expected since the noise bias is compensated for in the procedure. Nevertheless, the
MUSIC approach is not without limitations. Consider the covariance or spatial correlation matrix
described by equation (20). In the absence of noise, R = Ry is diagonal when the sources are

uncorrelated, non-diagonal and non-singular when the sources are partially correlated, and non-
diagonal and singular when some of the sources are fully correlated or coherent. From basic linear
algebra it is apparent that this approach will not perform well in the presence of coherent sources.
Consequently, matrix techniques that perform spatial smoothing on R have been developed to
remove the singularities[10]. These techniques are successful in that when the MUSIC method is
applied to the smoothed spatial correlation matrix, the performance in the coherent case approaches
that of the incoherent case. There is however a penalty paid for having to perform smoothing.
Spatial smoothing consists of diagonal sub-array averaging resulting in a reduction in the
dimensions of R, and consequently a reduction in the number of sources that may be detected.

C. Performance of Autocorrelation Based Techniques

Up until now the performance of the ME and MUSIC methods have been discussed with
respect to a priori knowledge of the true autocorrelation function. The performance of all
autocorrelation based techniques such as these, may be characterized by recognizing that the
autocorrelation function is not directly measured[6]. In practice, it is estimated from the measured
field. Referring to equations (1) and (3), the normalized autocorrelation function between any two
elements spaced Id apart is estimated by

N-i
7) R(id) = tg‘ X (n)x(n+i) i=0,1,2,....

For a two source case, the sampled values of the true autocorrelation are
(28) R(id) = exp[jkidul] + exp[jkiduz] i=0,1,2,....

where u; and u, are the angular positions of the point sources in the far field. Using equations
(27) and (28), references [6] and {7] have thoroughly evaluated the ME method in the presence of
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two sources. The following discussion extends their results to all autocorrelation based

techniques.
For the noise free case of two equal strength, unit amplitude, coherent point sources in the
far field, the magnitude of the error in the estimated autocorrelation function is

29) |edia] = | Rad)-Rad) |
5 sin(kd(N—i) u1;u2 )
airer g | cos(¢)|
! sin(kd > 2)

where ¢ is the phase difference referenced to the center of the array. Upon examining equation
(29), some interesting conclusions can be made. Considering only the cosine term, the error is
zero for ¢ equal to odd multiples of 7/2, and maximum for ¢ equal to even multiples of ©t/2.
Considering only the ratio of the sine terms, as the angular separation of the sources approaches
zero, the error approaches 2cos(¢ ). Thus, the overall worst case error will be e(id)=2, which is
on the order of R(0). Note that no improvement is achieved through temporal averaging in the
noiseless coherent case; the performance is identical regardless of the number of snapshots used.

If noise is included in equation (29) the error will become worse. Temporal averaging can
help reduce the effects of noise, but cannot eliminate it (this will be discussed further when
incoherent sources are considered). Consequently, if the true autocorrelation is unknown, it
appears that autocorrelation based methods do not afford overall better performance than that of the
classical Fourier method in the case of coherent sources . '

For the incoherent case, where the phase differences between the sources varies with time
over (0,27), temporal averaging may be performed to reduce the error described by equation (29)
to zero. Thus, if the duration of the averaging interval is long enough, it is possible to obtain the
true values of the autocorrelation function. In this case the performance of the autocorrelation
based methods are not all identical, and for the ME and MUSIC approaches, have been previously
discussed in sections A. and B., respectively.
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V. Conclusions

The basic concepts behind spectral estimation have been presented. The classical Fourier
approach exhibits some implementation advantages that make it a practical choice for many low
performance applications. Alternatively, the superresolution techniques are computationally
intensive, but can offer better performance provided the limitations are understood. For the case of
incoherent sources, the ME method with noise bias correction and the MUSIC method seem to be
comparable, and both offer better performance than the classical Fourier approach. For the case of
coherent sources, direct comparison is a bit more involved. Provided a priori knowledge of the
true autocorrelation function is available, the ME method is comparable to the classical Fourier
approach, and both are inferior to the MUSIC method when it is applied to a smoothed covariance
matrix . If the true autocorrelation function is unknown, autocorrelation based methods such as
ME"and MUSIC, do not appear to afford overall better performance than that of the classical
Fourier method for the case of coherent sources.
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